|
In computability theory, a Friedberg numbering is a numbering (enumeration) of the set of all partial recursive functions that has no repetitions: each partial recursive function appears exactly once in the enumeration (Vereščagin and Shen 2003:30). The existence of such numberings was established by Richard M. Friedberg in 1958 (Cutland 1980:78). ==References== * Nigel Cutland (1980), ''Computability: An Introduction to Recursive Function Theory'', Cambridge University Press. ISBN 9780521294652. * Richard M. Friedberg (1958), ''Three Theorems on Recursive Enumeration. I. Decomposition. II. Maximal Set. III. Enumeration Without Duplication'', ''Journal of Symbolic Logic'' 23:3, pp. 309–316. * Nikolaj K. Vereščagin and A. Shen (2003), ''Computable Functions'', American Mathematical Soc. ==External links== *(Institute of Mathematics ) 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Friedberg numbering」の詳細全文を読む スポンサード リンク
|